Leveraging local h-index to identify and rank influential spreaders in networks

نویسندگان

  • Qiang Liu
  • Yuxiao Zhu
  • Yan Jia
  • Lu Deng
  • Bin Zhou
  • Junxing Zhu
  • Peng Zou
چکیده

Identifying influential nodes in complex networks has received increasing attention for its great theoretical and practical applications in many fields. Some classical methods, such as degree centrality, betweenness centrality, closeness centrality, and coreness centrality, were reported to have some limitations in detecting influential nodes. Recently, the famous h-index was introduced to the network world to evaluate the spreading ability of the nodes. However, this method always assigns too many nodes with the same value, which leads to a resolution limit problem in distinguishing the real influences of these nodes. In this paper, we propose a local h-index centrality (LH-index) method to identify and rank influential nodes in networks. The LH-index method simultaneously takes into account of h-index values of the node itself and its neighbors, which is based on the idea that a node connecting to more influential nodes will also be influential. Experimental analysis on stochastic Susceptible-Infected-Recovered (SIR) model and several networks demonstrates the effectivity of the LH-index method in identifying influential nodes in networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying influential spreaders in complex networks based on gravity formula

How to identify the influential spreaders in social networks is crucial for accelerating/hindering information diffusion, increasing product exposure, controlling diseases and rumors, and so on. In this paper, by viewing the k-shell value of each node as its mass and the shortest path distance between two nodes as their distance, then inspired by the idea of the gravity formula, we propose a gr...

متن کامل

A Community-Based Approach to Identifying Influential Spreaders

Identifying influential spreaders in complex networks has a significant impact on understanding and control of spreading process in networks. In this paper, we introduce a new centrality index to identify influential spreaders in a network based on the community structure of the network. The community-based centrality (CbC) considers both the number and sizes of communities that are directly li...

متن کامل

Ranking influential spreaders is an ill-defined problem

Finding influential spreaders of information and disease in networks is an important theoretical problem, and one of considerable recent interest. It has been almost exclusively formulated as a node-ranking problem— methods for identifying influential spreaders rank nodes according to how influential they are. In this work, we show that the ranking approach does not necessarily work: the set of...

متن کامل

Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition

Identifying the most influential spreaders is an important issue in understanding and controlling spreading processes on complex networks. Recent studies showed that nodes located in the core of a network as identified by the k-shell decomposition are the most influential spreaders. However, through a great deal of numerical simulations, we observe that not in all real networks do nodes in high...

متن کامل

Maximizing the Spread of Influence via Generalized Degree Discount

It is a crucial and fundamental issue to identify a small subset of influential spreaders that can control the spreading process in networks. In previous studies, a degree-based heuristic called DegreeDiscount has been shown to effectively identify multiple influential spreaders and has severed as a benchmark method. However, the basic assumption of DegreeDiscount is not adequate, because it tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.09532  شماره 

صفحات  -

تاریخ انتشار 2017